© 2016 Kuta Software LLC. All rights reserved.

Test Review 2

Date_____ Period____

For each problem, find the equation of the line tangent to the function at the given point. Your answer should be in slope-intercept form.

1)
$$f(x) = x^2 - 6x + 11$$
 at $(1, 6)$

2)
$$y = \frac{2}{x-2}$$
 at $\left(-1, -\frac{2}{3}\right)$

3)
$$f(x) = \frac{x^2}{2} + x + \frac{5}{2}$$
 at $\left(-2, \frac{5}{2}\right)$

4)
$$f(x) = -x^3 + 3x^2 - 2$$
 at $(1, 0)$

Differentiate each function with respect to x.

5)
$$f(x) = -5x^3(4x^2 + 2)$$

6)
$$y = (3x^5 + 5x^3 + 2)(x^2 - 1)$$

7)
$$f(x) = (-5x^2 - 4) \cdot \frac{\cos x}{3}$$

8)
$$f(x) = (-x^5 - 2x - 1) \cdot 5\csc x$$

9)
$$f(x) = \frac{4x^3 - 2}{2x^4 - 5}$$

10)
$$y = \frac{x^5 - 2x^4}{5x^5 - 3}$$

11)
$$f(x) = \frac{5x^4 + 2}{4\cot x}$$

12)
$$f(x) = \frac{-2x^5 + 5}{\sec x}$$

A particle moves along a horizontal line. Its position function is s(t) for $t \ge 0$. For each problem, find the velocity function v(t) and the acceleration function a(t).

13)
$$s(t) = t^4 - 15t^3$$

A particle moves along a horizontal line. Its position function is s(t) for $t \ge 0$. For each problem, find the velocity function v(t), the acceleration function a(t), and the times t when the particle changes directions.

14)
$$s(t) = t^2 - 3t - 40$$

A particle moves along a horizontal line. Its position function is s(t) for $t \ge 0$. For each problem, find the velocity function v(t) and the acceleration function a(t). Then determine the average velocity from t=1 to t=4 seconds.

15)
$$s(t) = t^4 - 8t^3$$

A particle moves along a horizontal line. Its position function is s(t) for $t \ge 0$. For each problem, find the velocity function v(t) and the acceleration function a(t). Then determine the instantaneous acceleration at t=5 seconds.

16)
$$s(t) = t^4 - 11t^3$$