Station 1: Factoring

Factor each completely.

- 1) $15xy + 40x^2 + 12y + 32x$ 2) $120xy + 168x - 140y^2 - 196y$
- 3) $15xy + 3x^2 + 10y + 2x$ 4) $x^6 - 1 = 0$
- 5) $x^6 28x^3 + 27 = 0$ 6) $x^6 + 63x^3 - 64 = 0$
- 7) $1 + 216m^3$ 8) $375x^3 + 24$
- 9) $500 256m^3$ 10) $x^3 27$

Station 2: Synthetic Division/Rational Root Theorem

State the possible rational zeros for each function. Then find all rational zeros. 1) $f(x) = 2x^3 - 14x^2 + 31x - 55$ 2) $f(x) = 2x^3 - x^2 - 2x + 1$

3) $f(x) = 5x^3 + x^2 - 5x - 1$

Divide.

4) $(b^3 - 5b^2 - 25b + 11) \div (b - 8)$ 5) $(4a^3 + 12a^2 + 18a + 17) \div (a + 1)$

Station 3: Optimization

- 1) A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?
- 2) We need to enclose a field with a rectangular fence. We have 500 ft of fencing material and a building is on one side of the field and so won't need any fencing. Determine the dimensions of the field that will enclose the largest area.
- 3) We have a piece of cardboard that is 14 in by 10 in and we're going to cut out the corners as shown below and fold up the sides to form a box, also shown below. Determine the height of the box that will give a maximum volume.

Station 4: Applications of Polynomials

- 1. A storage company needs to design a new storage box that has twice the volume of its largest box. Its largest box is 5 ft long, 4 ft wide, and 3 ft high. The new box must be formed by increasing each dimension by the same amount. Find the increase in each dimension.
- 2. A block of cheese is in the shape of a rectangle prism and is square on each end. The length is 4 times the width of each square end. A 2-inch slice is cut from one end of the cheese and the remaining piece of cheese has a volume of 224 cubic inches. Find the dimensions of the original block of cheese.

Station 5: Properties of Exponents

Simplify. Your answer should contain only positive exponents.

1) $x^0 y^{-1} \cdot (-x^3 y^{-1})^{-5}$ 2) $((-u^5 v^3)^5 \cdot u^{-4})^4$

3) $x^3y^2 \cdot (-x^{-3}y^{-2})^2$

Simplify. Your answer should contain only positive exponents with no fractional exponents in the denominator.

4)
$$\frac{u^{-2}v^{-\frac{1}{4}} \cdot u^{-\frac{1}{3}}v^{0} \cdot u^{0}v^{\frac{3}{4}}}{(u^{0})^{-1}}$$
 5)
$$\left(\frac{y}{\frac{5}{x^{\frac{5}{3}}y^{-\frac{1}{2}}} \cdot yx^{4}}\right)^{0}$$

Station 6: Properties of Logarithms

Expand each logarithm.

1) $\log_3(w^5\sqrt{u})$ 2) $\log_4(x \cdot y \cdot z^4)$

3)
$$\log_2(x^3y^5)$$

Condense each expression to a single logarithm.

4)
$$\frac{\log_4 x}{2} + \frac{\log_4 y}{2} + \frac{\log_4 z}{2}$$
 5) $4\log_3 u + 3\log_3 v$

6) $2\log_4 u - 10\log_4 v$

Station 7: Solving Exponential and Logarithmic Equations

Solve each equation. Round your answers to the nearest ten-thousandth.

- 1) $2 \cdot 10^{9x} + 10 = 13$ 2) $9 \cdot 10^{m+6} + 6 = 57$
- 3) $10 \cdot 10^{5p} 2 = 15$

Solve each equation.

- 4) $\log x + \log (x + 15) = 2$ 5) $\log (x + 4) + \log 7 = \log 23$
- 6) $\log x \log (x 3) = 1$

Station 8: Solving with U-Substitution

Solve the equations:

1)
$$x^{\frac{2}{3}} + x^{\frac{1}{3}} - 2 = 0$$

2)
$$(x-2)^2 - 5(x-2) - 6 = 0$$

3)
$$3^{2x} - 5(3^x) + 4 = 0$$

Station 9: Applications of Exponentials and Logarithms

- 1) Your 3 year investment of \$20,000 received 5.2% interested compounded semi-annually. What is your total return?
- 2) Your 6.25 year investment of \$40,000 at 14% compounded quarterly is worth how much now?
- 3) If you invest \$20,000 at an annual interest rate of 1% compounded continuously, calculate the final amount you will have in the account after 20 years.

1. Sketch: $y = 2^{x-7} + 5$	2. Sketch: $y = \log(x+2) - 1$
a. Domain:	a. Domain:
b. Range:	b. Range:
c. Asymptotes:	c. Asymptotes:
d. End Behavior:	d. End Behavior:
$\begin{array}{c} x \rightarrow \underline{\qquad}, \gamma \rightarrow \underline{\qquad} \\ x \rightarrow \underline{\qquad}, \gamma \rightarrow \underline{\qquad} \end{array}$	x→, y→ x→, y→
e. Y-intercept:	e. Y-intercept:
f. X-intercept:	f. X-intercept:

Station 10: Graphing