Station 1: Factoring

Factor each completely.

1) $15 x y+40 x^{2}+12 y+32 x$
2) $120 x y+168 x-140 y^{2}-196 y$
3) $15 x y+3 x^{2}+10 y+2 x$
4) $x^{6}-1=0$
5) $x^{6}-28 x^{3}+27=0$
6) $x^{6}+63 x^{3}-64=0$
7) $1+216 m^{3}$
8) $375 x^{3}+24$
9) $500-256 m^{3}$
10) $x^{3}-27$

Station 2: Synthetic Division/Rational Root Theorem

State the possible rational zeros for each function. Then find all rational zeros.

1) $f(x)=2 x^{3}-14 x^{2}+31 x-55$
2) $f(x)=2 x^{3}-x^{2}-2 x+1$
3) $f(x)=5 x^{3}+x^{2}-5 x-1$

Divide.
4) $\left(b^{3}-5 b^{2}-25 b+11\right) \div(b-8)$
5) $\left(4 a^{3}+12 a^{2}+18 a+17\right) \div(a+1)$

Station 3: Optimization

1) A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?
2) We need to enclose a field with a rectangular fence. We have 500 ft of fencing material and a building is on one side of the field and so won't need any fencing. Determine the dimensions of the field that will enclose the largest area.
3) We have a piece of cardboard that is 14 in by 10 in and we're going to cut out the corners as shown below and fold up the sides to form a box, also shown below. Determine the height of the box that will give a maximum volume.

Station 4: Applications of Polynomials

1. A storage company needs to design a new storage box that has twice the volume of its largest box. Its largest box is 5 ft long, 4 ft wide, and 3 ft high. The new box must be formed by increasing each dimension by the same amount. Find the increase in each dimension.
2. A block of cheese is in the shape of a rectangle prism and is square on each end. The length is 4 times the width of each square end. A 2 -inch slice is cut from one end of the cheese and the remaining piece of cheese has a volume of 224 cubic inches. Find the dimensions of the original block of cheese.

Station 5: Properties of Exponents

Simplify. Your answer should contain only positive exponents.

1) $x^{0} y^{-1} \cdot\left(-x^{3} y^{-1}\right)^{-5}$
2) $\left(\left(-u^{5} v^{3}\right)^{5} \cdot u^{-4}\right)^{4}$
3) $x^{3} y^{2} \cdot\left(-x^{-3} y^{-2}\right)^{2}$

Simplify. Your answer should contain only positive exponents with no fractional exponents in the denominator.
4) $\frac{u^{-2} v^{-\frac{1}{4}} \cdot u^{-\frac{1}{3}} v^{0} \cdot u^{0} v^{\frac{3}{4}}}{\left(u^{0}\right)^{-1}}$
5) $\left(\frac{y}{x^{\frac{5}{3}} y^{-\frac{1}{2}} \cdot y x^{4}}\right)^{0}$

Station 6: Properties of Logarithms

Expand each logarithm.

1) $\log _{3}\left(w^{5} \sqrt{u}\right)$
2) $\log _{4}\left(x \cdot y \cdot z^{4}\right)$
3) $\log _{2}\left(x^{3} y^{5}\right)$

Condense each expression to a single logarithm.
4) $\frac{\log _{4} x}{2}+\frac{\log _{4} y}{2}+\frac{\log _{4} z}{2}$
5) $4 \log _{3} u+3 \log _{3} v$
6) $2 \log _{4} u-10 \log _{4} v$

Station 7: Solving Exponential and Logarithmic Equations

Solve each equation. Round your answers to the nearest ten-thousandth.

1) $2 \cdot 10^{9 x}+10=13$
2) $9 \cdot 10^{m+6}+6=57$
3) $10 \cdot 10^{5 p}-2=15$

Solve each equation.
4) $\log x+\log (x+15)=2$
5) $\log (x+4)+\log 7=\log 23$
6) $\log x-\log (x-3)=1$

Station 8: Solving with U-Substitution

Solve the equations:

1) $x^{\frac{2}{3}}+x^{\frac{1}{3}}-2=0$
2) $(x-2)^{2}-5(x-2)-6=0$
3) $3^{2 x}-5\left(3^{x}\right)+4=0$

Station 9: Applications of Exponentials and Logarithms

1) Your 3 year investment of $\$ 20,000$ received 5.2% interested compounded semi-annually. What is your total return?
2) Your 6.25 year investment of $\$ 40,000$ at 14% compounded quarterly is worth how much now?
3) If you invest $\$ 20,000$ at an annual interest rate of 1% compounded continuously, calculate the final amount you will have in the account after 20 years.

Station 10: Graphing

1. Sketch: $y=2^{x-7}+5$
a. Domain: \qquad
b. Range: \qquad
c. Asymptotes: \qquad
d. End Behavior:

e. Y-intercept: \qquad
f. X-intercept: \qquad
2. Sketch: $y=\log (x+2)-1$
a. Domain: \qquad
b. Range: \qquad
c. Asymptotes: \qquad
d. End Behavior:
$x \rightarrow$
$x \rightarrow$ \qquad ,$y \rightarrow$ \qquad
e. Y-intercept: \qquad
f. X-intercept: \qquad
