Unit 4 Quiz 2 REVIEW

Date \qquad
\qquad

Solve each related rate problem.

1) A hypothetical square grows so that the length of its sides are increasing at a rate of 4 $\mathrm{m} / \mathrm{min}$. How fast is the area of the square increasing when the sides are 15 m each?
2) A hypothetical square shrinks so that the length of its sides are changing at a rate of -7 $\mathrm{m} / \mathrm{min}$. At what rate is the area of the square changing when the sides are 10 m each?
3) A hypothetical square shrinks at a rate of $16 \mathrm{~m}^{2} / \mathrm{min}$. At what rate are the sides of the square changing when the sides are 10 m each?
4) A crowd gathers around a movie star, forming a circle. The radius of the crowd increases at a rate of $7 \mathrm{ft} / \mathrm{sec}$. How fast is the area taken up by the crowd increasing when the radius is 14 ft ?
5) Water slowly evaporates from a circular shaped puddle. The area of the puddle decreases at a rate of $49 \pi \mathrm{in}^{2} / \mathrm{hr}$. Assuming the puddle retains its circular shape, at what rate is the radius of the puddle changing when the radius is 13 in ?
6) A perfect cube shaped ice cube melts at a rate of $27 \mathrm{~mm}^{3} / \mathrm{sec}$. Assume that the block retains its cube shape as it melts. At what rate are the sides of the ice cube changing when the sides are 7 mm each?
7) A spherical snowball is rolled in fresh snow, causing it grow at a rate of $36 \pi \mathrm{in}^{3} / \mathrm{sec}$. How fast is the radius of the snowball increasing when the radius is 8 in?
8) A spherical balloon is deflated so that its radius decreases at a rate of $3 \mathrm{~cm} / \mathrm{sec}$. At what rate is the volume of the balloon changing when the radius is 9 cm ?
9) A 10 ft ladder is leaning against a wall and sliding towards the floor. The foot of the ladder is sliding away from the base of the wall at a rate of $4 \mathrm{ft} / \mathrm{sec}$. How fast is the top of the ladder sliding down the wall when the top of the ladder is 8 ft from the ground?
10) An observer stands 2400 ft away from a launch pad to observe a rocket launch. The rocket blasts off and maintains a velocity of $600 \mathrm{ft} / \mathrm{sec}$. Assume the scenario can be modeled as a right triangle. How fast is the observer to rocket distance changing when the rocket is 700 ft from the ground?

Evaluate each indefinite integral.

11) $\int\left(-18 x^{5}+15 x^{4}+15 x^{2}\right) d x$
12) $\int\left(10 x^{4}+8 x\right) d x$
13) $\int\left(30 x^{5}+15 x^{4}+4 x\right) d x$
14) $\int\left(8 x-x^{-2}-9 x^{-4}\right) d x$
15) $\int\left(12 x^{2}-\frac{12}{x^{5}}\right) d x$
16) $\int 6 x^{5} d x$
17) $\int-\frac{10 x^{\frac{1}{4}}}{4} d x$
18) $\int\left(10 x^{4}+\frac{25 x^{\frac{2}{3}}}{3}+\frac{16 x^{\frac{1}{3}}}{3}\right) d x$
19) $\int \frac{25 \sqrt[4]{x}}{4} d x$
20) $\int\left(25 x^{4}+8 x+4 \sqrt[3]{x}\right) d x$
21) $\int 4 x\left(6 x^{4}+5 x^{3}+2\right) d x$
22) $\int 2 x^{3}\left(-3 x^{2}+10 x+10\right) d x$
23) $\int \frac{-2 x^{2}-2 x-9}{x^{4}} d x$
24) $\int \frac{-x^{3}+9 x-16}{x^{5}} d x$
\qquad

Unit 4 Quiz 2 REVIEW

Date \qquad
\qquad

Solve each related rate problem.

1) A hypothetical square grows so that the length of its sides are increasing at a rate of 4 $\mathrm{m} / \mathrm{min}$. How fast is the area of the square increasing when the sides are 15 m each?

$$
A=\text { area of square } s=\text { length of sides } t=\text { time }
$$

Equation: $A=s^{2} \quad$ Given rate: $\frac{d s}{d t}=4 \quad$ Find: $\left.\frac{d A}{d t}\right|_{s=15}$
$\left.\frac{d A}{d t}\right|_{s=15}=2 s \cdot \frac{d s}{d t}=120 \mathrm{~m}^{2} / \mathrm{min}$
2) A hypothetical square shrinks so that the length of its sides are changing at a rate of -7 $\mathrm{m} / \mathrm{min}$. At what rate is the area of the square changing when the sides are 10 m each?
$A=$ area of square $s=$ length of sides $t=$ time
Equation: $A=s^{2} \quad$ Given rate: $\frac{d s}{d t}=-7 \quad$ Find: $\left.\frac{d A}{d t}\right|_{s=10}$
$\left.\frac{d A}{d t}\right|_{s=10}=2 s \cdot \frac{d s}{d t}=-140 \mathrm{~m}^{2} / \mathrm{min}$
3) A hypothetical square shrinks at a rate of $16 \mathrm{~m}^{2} / \mathrm{min}$. At what rate are the sides of the square changing when the sides are 10 m each?
$A=$ area of square $s=$ length of sides $t=$ time
Equation: $A=s^{2} \quad$ Given rate: $\frac{d A}{d t}=-16 \quad$ Find: $\left.\frac{d s}{d t}\right|_{s=10}$

$$
\left.\frac{d s}{d t}\right|_{s=10}=\frac{1}{2 s} \cdot \frac{d A}{d t}=-\frac{4}{5} \mathrm{~m} / \mathrm{min}
$$

4) A crowd gathers around a movie star, forming a circle. The radius of the crowd increases at a rate of $7 \mathrm{ft} / \mathrm{sec}$. How fast is the area taken up by the crowd increasing when the radius is 14 ft ?

$$
\begin{aligned}
& A=\text { area of circle } \quad r=\text { radius } \quad t=\text { time } \\
& \text { Equation: } A=\pi r^{2} \quad \text { Given rate: } \frac{d r}{d t}=7 \quad \text { Find: }\left.\frac{d A}{d t}\right|_{r=14} \\
& \left.\frac{d A}{d t}\right|_{r=14}=2 \pi r \cdot \frac{d r}{d t}=196 \pi \mathrm{ft}^{2} / \mathrm{sec}
\end{aligned}
$$

5) Water slowly evaporates from a circular shaped puddle. The area of the puddle decreases at a rate of $49 \pi \mathrm{in}^{2} / \mathrm{hr}$. Assuming the puddle retains its circular shape, at what rate is the radius of the puddle changing when the radius is 13 in?

$$
A=\text { area of circle } \quad r=\text { radius } \quad t=\text { time }
$$

Equation: $A=\pi r^{2} \quad$ Given rate: $\frac{d A}{d t}=-49 \pi \quad$ Find: $\frac{d r}{d t}$ $r_{r=13}$

$$
\left.\frac{d r}{d t}\right|_{r=13}=\frac{1}{2 \pi r} \cdot \frac{d A}{d t}=-\frac{49}{26} \mathrm{in} / \mathrm{hr}
$$

6) A perfect cube shaped ice cube melts at a rate of $27 \mathrm{~mm}^{3} / \mathrm{sec}$. Assume that the block retains its cube shape as it melts. At what rate are the sides of the ice cube changing when the sides are 7 mm each?

$$
\begin{aligned}
& V=\text { volume of cube } s=\text { length of sides } \quad t=\text { time } \\
& \text { Equation: } V=s^{3} \quad \text { Given rate: } \frac{d V}{d t}=-27 \\
& \text { Find: }\left.\frac{d s}{d t}\right|_{s=7} \\
& \left.\frac{d s}{d t}\right|_{s=7}=\frac{1}{3 s^{2}} \cdot \frac{d V}{d t}=-\frac{9}{49} \mathrm{~mm} / \mathrm{sec}
\end{aligned}
$$

7) A spherical snowball is rolled in fresh snow, causing it grow at a rate of $36 \pi \mathrm{in}^{3} / \mathrm{sec}$. How fast is the radius of the snowball increasing when the radius is 8 in?

$$
\begin{aligned}
& V=\text { volume of sphere } \quad r=\text { radius } \quad t=\text { time } \\
& \text { Equation: } V=\frac{4}{3} \pi r^{3} \quad \text { Given rate: } \frac{d V}{d t}=36 \pi \quad \text { Find: }\left.\frac{d r}{d t}\right|_{r=8} \\
& \left.\frac{d r}{d t}\right|_{r=8}=\frac{1}{4 \pi r^{2}} \cdot \frac{d V}{d t}=\frac{9}{64} \mathrm{in} / \mathrm{sec}
\end{aligned}
$$

8) A spherical balloon is deflated so that its radius decreases at a rate of $3 \mathrm{~cm} / \mathrm{sec}$. At what rate is the volume of the balloon changing when the radius is 9 cm ?

$$
\begin{aligned}
& V=\text { volume of sphere } \quad r=\text { radius } \quad t=\text { time } \\
& \text { Equation: } V=\frac{4}{3} \pi r^{3} \quad \text { Given rate: } \frac{d r}{d t}=-3 \quad \text { Find: }\left.\frac{d V}{d t}\right|_{r=9} \\
& \left.\frac{d V}{d t}\right|_{r=9}=4 \pi r^{2} \cdot \frac{d r}{d t}=-972 \pi \mathrm{~cm}^{3} / \mathrm{sec}
\end{aligned}
$$

9) A 10 ft ladder is leaning against a wall and sliding towards the floor. The foot of the ladder is sliding away from the base of the wall at a rate of $4 \mathrm{ft} / \mathrm{sec}$. How fast is the top of the ladder sliding down the wall when the top of the ladder is 8 ft from the ground?
$x=$ horizontal distance from base of ladder to wall $y=$ vertical distance from top of ladder to floor $t=$ time Equation: $x^{2}+y^{2}=10^{2} \quad$ Given rate: $\frac{d x}{d t}=4 \quad$ Find: $\left.\frac{d y}{d t}\right|_{y=8}$ $\left.\frac{d y}{d t}\right|_{y=8}=-\frac{x}{y} \cdot \frac{d x}{d t}=-3 \mathrm{ft} / \mathrm{sec}$, therefore: $3 \mathrm{ft} / \mathrm{sec}$ down the wall
10) An observer stands 2400 ft away from a launch pad to observe a rocket launch. The rocket blasts off and maintains a velocity of $600 \mathrm{ft} / \mathrm{sec}$. Assume the scenario can be modeled as a right triangle. How fast is the observer to rocket distance changing when the rocket is 700 ft from the ground?

$$
\begin{aligned}
& a=\text { altitute of rocket } z=\text { distance from observer to rocket } t=\text { time } \\
& \text { Equation: } a^{2}+5760000=z^{2} \quad \text { Given rate: } \frac{d a}{d t}=600 \quad \text { Find: }\left.\frac{d z}{d t}\right|_{a=700} \\
& \left.\frac{d z}{d t}\right|_{a=700}=\frac{a}{z} \cdot \frac{d a}{d t}=168 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Evaluate each indefinite integral.

11) $\int\left(-18 x^{5}+15 x^{4}+15 x^{2}\right) d x$
12) $\int\left(10 x^{4}+8 x\right) d x$

$$
-3 x^{6}+3 x^{5}+5 x^{3}+C
$$

$$
2 x^{5}+4 x^{2}+C
$$

13) $\int\left(30 x^{5}+15 x^{4}+4 x\right) d x$

$$
5 x^{6}+3 x^{5}+2 x^{2}+C
$$

14) $\int\left(8 x-x^{-2}-9 x^{-4}\right) d x$

$$
4 x^{2}+\frac{3}{x^{3}}+\frac{1}{x}+C
$$

15) $\int\left(12 x^{2}-\frac{12}{x^{5}}\right) d x$
16) $\int 6 x^{5} d x$

$$
4 x^{3}+\frac{3}{x^{4}}+C
$$

$$
x^{6}+C
$$

17) $\int-\frac{10 x^{\frac{1}{4}}}{4} d x$

$$
-2 x^{\frac{5}{4}}+C
$$

18) $\int\left(10 x^{4}+\frac{25 x^{\frac{2}{3}}}{3}+\frac{16 x^{\frac{1}{3}}}{3}\right) d x$
$2 x^{5}+5 x^{\frac{5}{3}}+4 x^{\frac{4}{3}}+C$
19) $\int \frac{25 \sqrt[4]{x}}{4} d x$

$$
5 x^{\frac{5}{4}}+C
$$

$$
\text { 20) } \begin{gathered}
\int\left(25 x^{4}+8 x+4 \sqrt[3]{x}\right) d x \\
5 x^{5}+4 x^{2}+3 x^{\frac{4}{3}}+C
\end{gathered}
$$

21) $\int 4 x\left(6 x^{4}+5 x^{3}+2\right) d x$

$$
4 x^{6}+4 x^{5}+4 x^{2}+C
$$

22) $\int 2 x^{3}\left(-3 x^{2}+10 x+10\right) d x$

$$
-x^{6}+4 x^{5}+5 x^{4}+C
$$

23) $\int \frac{-2 x^{2}-2 x-9}{x^{4}} d x$

$$
\frac{2}{x}+\frac{1}{x^{2}}+\frac{3}{x^{3}}+C
$$

24) $\int \frac{-x^{3}+9 x-16}{x^{5}} d x$

$$
\frac{1}{x}-\frac{3}{x^{3}}+\frac{4}{x^{4}}+C
$$

