Differentiate each function with respect to x.

1)
$$y = (-3x^2 + 5)^5$$

2)
$$y = (5x^2 + 3)^{\frac{1}{2}}$$

3)
$$y = (-2x^4 + 5)^{-3}$$

4)
$$y = \sqrt{4x^2 + 1}$$

5)
$$f(x) = (3x - 1)(4x^5 + 3)^2$$

6)
$$y = \frac{(5x^3 + 1)^{-4}}{-x^5 + 4}$$

7)
$$y = \left(\frac{-2x^5 - 3}{4x^3 - 1}\right)^2$$

8)
$$y = ((5x^5 + 2)^4 + 4)^5$$

For each problem, use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y.

9)
$$1 = 3x^2 - 5y^3$$

10)
$$2x^2 + 2y^2 + 5y = 3$$

Write the equation of the tangent line through the given point.

11)
$$2 = 2x^3 - xy$$
 at $(-2, 9)$

Differentiate each function with respect to x.

12)
$$y = \sin 4x^3$$

13)
$$y = (4\cos x)^{10}$$

A particle moves along a horizontal line. Its position function is s(t) for $t \ge 0$. For each problem, find the velocity function v(t) and the acceleration function a(t).

14)
$$s(t) = -t^3 + 28t^2 - 196t$$

A particle moves along a horizontal line. Its position function is s(t) for $t \ge 0$. For each problem, find the times t when the particle changes directions.

15)
$$s(t) = t^3 - 22t^2 + 121t$$

A particle moves along a horizontal line. Its position function is s(t) for $t \ge 0$. For each problem, find the intervals of time when the particle is moving left and moving right.

16)
$$s(t) = t^3 - 26t^2 + 169t$$

A particle moves along a horizontal line. Its velocity function is v(t) for $t \ge 0$. For each problem, find the intervals of time when the particle is moving left and moving right.

17)
$$v(t) = 3t^2 - 16t$$

A particle moves along a horizontal line. Its velocity function is v(t) for $t \ge 0$. For each problem, find the intervals of time when the particle is slowing down and speeding up.

18)
$$v(t) = 3t^2 - 60t + 225$$

A particle moves along a horizontal line. Its position function is s(t) for $t \ge 0$. For each problem, find the displacement of the particle and the distance traveled by the particle over the given interval.

19)
$$s(t) = t^3 - 13t^2 + 40t$$
; $0 \le t \le 6$